
Developing a robot is more complicated than a
standard embedded software implementation.
There are unique challenges to overcome to
ensure that a robot will meet its requirements,
function as intended, and be delivered on time
and on budget.

The teams developing robotics software must coordinate
well within their own team while also working in parallel
with development teams from many other engineering
disciplines. Building a robot requires integrated efforts of
software engineers, system engineers, electrical engineers,
control engineers, and mechanical engineers. During
development cycles, test robots are a limited resource
because of their cost and complexity. All engineering
disciplines have to share the few robots that are available.
Most importantly, robots are fragile and dangerous, so safety
is the top priority.

Robots consist of many types of processors, actuators,
and sensors. Therefore, robotic software engineers must
constantly learn new APIs, tools, and techniques to work
with a wide-ranging set of components.

If the robot is for a medical application, you will also need
to address the added layer of regulatory considerations.
For example, all software for a medical application must
be tested to a level that eliminates risk to the patients and

MANAGING LARGE ROBOTICS
SOFTWARE TEAMS

6 Critical Lessons Learned (the hard way)

staff working with the robot. Emerging and evolving safety
and performance standards coupled with regulatory
requirements can create a huge burden on software
engineering teams developing a medical robot.

Here, we share six critical lessons learned to help directors
of software engineers and their managers effectively
manage the myriad of challenges inherent in robotic
software development projects while keeping software
engineers safe and avoid blowing up their robots.

1.� �Communication & Coordination
are Vital

When collaborating with a large multidisciplinary team of
engineers, effective communication is critical, especially if
the team is distributed.

The daily scrum meeting is a best practice for sharing
information across engineering disciplines. Software
engineering teams expect this standard practice, but
scrum meetings may be new for the system, electrical,
and mechanical engineers on the project. As a software
manager, consider inviting engineers from other
disciplines. They do not need to come every day, but if you
extend the invitation, you provide team members from
the extended team a forum where they can go when they
need something from the software team.

medacuitysoftware.com

I N S I G H T S
into Robotics Software Development

© 2021 MedAcuity | All rights reserved.
RBINS01-03.2021

medacuitysoftware.com

INSIGHTS into Robotics Software Development

Here’s a closer look at the various engineering
disciplines, their areas of responsibility, and how
they interact:

System engineering is responsible for defining the
system requirements and distributing them to the other
engineering disciplines. They typically represent the
product owner for end-of-sprint demos. The System Test
Lead is responsible for verifying the robot works and
for distinguishing software bugs from hardware bugs.
We have found that when the System Engineering
Lead and the Lead System Test Engineer regularly
attend stand-ups, there is synergy in sharing the system
test burden with the software test team. The System
Engineering Lead typically owns the robot hardware
and is key to ensuring that the robot is configured for
testing the software.

Control engineering can be tightly coupled with
the software team if you are using a framework, such
as Robot Operating System (ROS). If you are using code
generation from Simulink or other high-level design
tools to create your controls software, then you will need
software engineers to integrate the control system code
with the other components in the system.

Mechanical engineering typically owns the product
lifecycle management (PLM) tool and works with
the software team to plan part numbers for software
images stored on the robot. Software managers should
work with mechanical engineering early on to establish
a process for loading finished software to the system.
Otherwise, bringing up your robot product line at the
factory could become chaotic with staff trying to find
the correct software version to install, especially with last
minute bug fixes.

Electrical engineering owns the boards that your
software runs on. To verify that the hardware and
firmware are working on a new board and to ensure a
smooth board bring-up, assign some of your software
engineers to start working with the electrical engineers
early in the development cycle. The software engineer
can influence the schematic by recommending features
that will assist in software tests, for example, including
LEDs and exposing test points that can be probed with
a scope or logic analyzer. Boards that are easy to debug
and test can improve your ability to meet your time-to-
market window and avoid costly rework.

2. Robots are Scarce Resources

The days of everyone having a robot on their desk are
few and far between. With many teams operating in
remote work environments, some smaller robots can
go home with people, but this is still rare. Surgical robot
engineering units typically cost about $500k and require
a forklift and lift truck to move.

Large software teams often only have a few robots
available for development work. Even with a large
distributed development team, it is possible to
successfully accommodate everyone with few
complaints. Here’s how we ensured that large software
teams have access to the robots when needed.

The Lead Software Test Engineer has a dedicated robot
during core business hours. Anyone who wants access
to the robot coordinates directly with them. The lead
software test engineer works with software engineers to
test their builds between his tests, which is helpful for
distributed teams because all communication can be
done over email and instant message.

�The System Test Lead also has a dedicated robot and
coordinates with the software team. They focus on
addressing customer-facing bug fixes and dedicate
a portion of their time and robot to work on issues
discussed at the morning stand-up meetings.

�The Software team shares two full robots that have
most capabilities intact and two robot “road-kills.”
A road-kill consists of the same processors, sensors,
and actuators of the full robot wired together, but
the actuators or motors are not physically connected
to the arms or chassis. When the motor spins, nothing
physically moves, which helps to keep the operator safe.

�The team has a group calendar where they reserve
time slots during the week. Typically, this approach
covers 80% of the scheduling conflicts. The other
20% of conflicts are handled at the daily stand-up.
Effective scheduling coordination is key to ensuring
that “not having access to a robot” is never a blocker for
completing the assigned work.

© 2021 MedAcuity | All rights reserved.
RBINS01-03.2021

medacuitysoftware.com

3. Robots are Fragile

All electronic systems can be fragile, including robots.
For example, an expensive engineering board that
is not properly installed can blow up if you insert it
backwards. Early robotics prototypes can be especially
fragile since all safeguards may not be implemented in
the prototype. Prototypes are critical to testing hardware
and software, and solving technical challenges in the
development cycle. Engineers need to work with these
prototypes carefully. A momentary act of carelessness
not only destroys the hardware, but also impedes the
whole software team who need to use that hardware.

Robots can be mechanically fragile too. Joints have
limits and can be overextended and break. Additionally,
unless they are programmed, robots are not aware of
the relative position of appendages and can collide
with themselves. It is very easy to exceed a joint limit or
forget to remove add-on items from a previous test that
are not in the current collision model before testing the
automated movement of the robot.

Software engineers should “know their robot” before
starting work with the physical robot. This is done
through different types of training. Training begins
with a software engineer reading the robot operator’s
manual, if you are fortunate enough to work with a
team that created one. If you are not that fortunate, it’s
worth the time to create an operator’s manual with the
systems engineer so that your team will understand the
capabilities and limitations of the robot. Consider adding
a requirement or training event to the backlog for the
software engineer to read the operator’s manual before
any hands-on work with the robot.

The next training step is having a seasoned member
of the team, typically the Lead Software Test Engineer,
introduce the new engineer to the robot and
demonstrate its typical operation. This includes installing
the battery, powering the robot up, and connecting to
the robot from the controller. The lead engineer should
show the new engineer where the emergency stop is,
discuss which operations on the controller are safe to
use, and demonstrate how to shut down the robot, and
how to disconnect the battery.

The emergency stop is key. The new engineer must be
ready to press that button when testing new code or
performing any operation that causes robot movement.
Accidents do happen. However, with proper training, any

negative impact on the robot and the people in the test
lab can be greatly reduced or prevented altogether.

4. Robots are Dangerous

A robot with untested software can move in unpredict-
able ways. If velocity limits are not controlled, robots
can easily accelerate and hurt or kill someone. A robot
that can operate safely next to a person is known as a
collaborative robot (cobot). A surgical robot needs to
operate around surgical staff and must be able to collide
with people safely. Software engineers might work with
engineering units that do not have functional collision
sensors. In this state, robots do not detect people around
them, which can be extremely dangerous.

Standoff distance is key to safety. Robots
should be considered dangerous until proven
otherwise. Plan to have two people in the lab
for early tests of robots: one person with their
finger on the emergency stop and the other

triggering the test operation.

Software managers should also make sure robots
are isolated from the corporate network. Robots can
easily be connected to the network by accident or for
convenience. Once on the network, an engineer who is
testing controller software could accidentally connect
to the real robot instead of their emulator. Seeing a
500-pound robot suddenly come to life and try to drive
off its lift is scary and dangerous. You should isolate all
local testing behind containers that cannot connect to
corporate networks.

© 2021 MedAcuity | All rights reserved.
RBINS01-03.2021

INSIGHTS into Robotics Software Development

medacuitysoftware.com

5. Robot Software Development
 Requires Many Skills

Because software engineers develop the entire robotic
software stack they need to be jacks-of-all-trades. The
software engineer must also be highly proficient in
their primary programming language, whether it’s
C++, Python, or Simulink and MATLAB. This includes
firmware, board support packages (BSPs), embedded
OS, device drivers, and application code. Plus, if you use
a specialized framework like ROS or ROS2, your team
will need to be highly proficient with that software
framework and tools.

The key to effectively managing the complexity of a
large robot software development project is a software
architecture that promotes consistency across the
software stack. You must always ask yourself,

6. Medical Robot Development
 Requires Even More Consideration

The unique regulatory requirements of medical devices
impact the entire robot software development lifecycle.
All tools used in the lifecycle need to be validated. The
software, depending on the medical device class of
the robot, will need to be documented in a rigorously
managed quality management system (QMS). For
example, ROS and ROS2 are considered software of
unknown provenance (SOUP), requiring their own
validation for the robot’s intended use. Medical device
standards exist, as well as standards related to surgical
robots. Software engineering managers must be fully
apprised of these standards when planning their project.

Many engineers working with medical robotics have
robotics expertise but lack the knowledge for how to
navigate the regulatory development process. In this
case, it makes sense to team up with experts early
to help the team adapt their development process
to efficiently address the regulatory requirements of
medical robot development. This is much better than
trying to bolt on the regulatory requirements while
rushing a product to market.

Lessons Learned

Robot software development projects require
different considerations compared to non-robot
software development. Software managers have to
contend with the unique challenges of coordinating
multidisciplinary teams, sharing scarce resources,
handling fragile and dangerous robots, complicated
software architectures, and regulatory requirements.
Knowledge gaps, shortcuts, and inexperience can
compound these challenges.

Robot development still seems like the Wild West
since many of these efforts are new and unique.
When developing medical robots, like any emerging
technology, the biggest risk is you don’t know what
you don’t know. Regardless of whether your robotic
software development project is medical or not, follow
the six best practices we outline here to avoid making
mistakes that could be dangerous, expensive, and
delay your project schedule.

© 2021 MedAcuity | All rights reserved.
RBINS01-03.2021

INSIGHTS into Robotics Software Development

Can your software architecture
span the processors, sensors, and

actuators in your robot?

“ “

medacuitysoftware.com

ABOUT MEDACUITY
MedAcuity, a specialized engineering firm, develops custom software solutions to address the most critical product
development challenges facing MedTech and Robotics companies and innovators, large and small. With over a
decade of experience in software design and development methodologies for heavily regulated compliance-driven
industries, our technical capabilities span all levels of software from embedded systems to mobile devices, the
cloud, and enterprise technologies.

ABOUT THE AUTHOR

With over twenty years of embedded and application-level development experience, Tom
designs and deploys enterprise, embedded, and mobile solutions on Linux/UNIX, Mac, iOS,
and Windows platforms using a variety of languages including C++, C#, Python, Java, and
JavaScript. Additionally, his expertise includes simulation and model-based design using
MATLAB and Simulink to better understand the operating principles of robots and robotic
systems under development. As lead software architect for robotics projects, Tom oversees
end-to-end development of ROS-based mobile robots and surgical robots.

Let us know where you need help with an ongoing or
upcoming robotic software development project.

Contact MedAcuity - info@medacuitysoftware.com

Tom Amlicke | Software Architect & Robotics Systems Engineer

© 2021 MedAcuity | All rights reserved.
RBINS01-03.2021

INSIGHTS into Robotics Software Development

